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ABSTRACT 

We show that i fX is a separable Banach space, then every continuous, convex, 
G~teaux differentiable function on X is Fr~chet differentiable on a dense set if 
and only if X* has the weak*-Convex Point of Continuity Property (C*PCP). 

Introduction 

The following theorem, which was the culmination of several years of  effort 
by many mathematicians, is now well known, and was the motivation for the 
results we present in this note: 

THEOREM [5]. A Banach space X is an Asplund space (every equivalent 
norm is Fr~chet differentiable on a dense set) i f  and only i f  X* has RNP (every 
bounded set is dentable ). X has RNP if  and only i f  X* is a weak*-Asplund space 
(every equivalent dual norm is Fr~chet differentiable on a dense set). 

A Banach space X has the Convex Point-of-Continuity Property (CPCP) if 
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every closed, bounded, convex subset C of X has a point at which the relative 
weak and norm topologies on C coincide. This property was introduced by 
Bourgain in [2] (he called it property (.)). Dually, X* has the weak*-Point of  
Continuity Property (C*PCP) if every weak*-compact, convex subset C of X* 
has a point at which the relative weak* and norm topologies coincide. 

It is immediate that RNP implies CPCP. The converse is not true, even for 

spaces with separable dual. A counterexample is the predual of the James Tree 
space ([4], [ 15]; see also [ 10]). 

It follows from the results of Godefroy and Maurey [13] that if X is a 
separable Banach space which contains an isomorphic copy of Ii, then X* does 
not have C*PCP. On the other hand, it is shown in [12] that the dual of the 
James Tree space has C*PCP, and that there is a Banach space which does not 
contain II and yet X* does not have C*PCP. 

The following result provides dual characterizations for CPCP and C*PCP: 

THEOREM 1. Let X be a separable Banach space. Then: 
(a) Every equivalent norm on X with strictly convex dual is Fr~chet differenti- 

able on a dense set if  and only i f  X* has C*PCP. 
(b) The dual of every equivalent strictly convex norm on X is Frdchet 

differentiable on a dense set if  and only if  X has CPCP. 

In proving this Theorem we also obtain the following analogue of  the 
Bishop-Phelps Theorem (see Proposition 7): If  X has CPCP and C c X is 
closed, bounded and convex, then the set of functionals which attain their 
supremum over C at a point of weak-to-norm continuity of  C is norm dense in 
X*. Recall [3] that if C is non-dentable, then the set of  supremum attaining 
functionals on C is of first category in X*. 

By analogy with Asplund space, we will call a Banach space X a Phelps space 
if every continuous, convex, Gdteaux differentiable function on X is Frrchet 
differentiable on a dense set. (In [18], Phelps exhibited a G~teaux-smooth, 
nowhere Frrchet differentiable norm on a Banach space, thus answering a 
question posed by Mazur in [ 16].) In Section 2, we prove a third equivalence 
for Theorem l(a), namely: 

THEOREM 2. Let X be a separable Banach space. Then X is a Phelps space iJ 
and only if)(* has C*PCP. 

We conclude this note with some remarks concerning the properties of 

Phelps spaces. 
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All Banach spaces are assumed to be real. Our notation is standard. In 

particular, we denote the unit ball o f X b y  ~x ,  the unit sphere of  Xby  6¢x, and 

the dual on X* to a norm 1[ • 1[ on X by 11 • II* 

The first and third named authors wish to thank the University of  Alberta 

for its hospitality during the preparation of  this paper. 

1. Proof of Theorem 1 

We recall some definitions: 

(1) If C c X, r E X * ,  and a > 0, then the set S ( f ,  C, o0 

(x E C: fix) > sup f(C) - a} is called a slice of C. 

(2) x E C is a denting point of C if the slices of C containing x form a base for 

the relative norm topology on C at x. 

(3) x E C  is strongly exposed if there is a n f ~ X *  such that if {xn} c C and 

f(xn)-'f(x), then xn-~x.  The functional f is called a strongly exposing 
functional for x. Note that a strongly exposed point is a denting point. 

(4) A norm on X is strictly convex if every point of  norm 1 is an extreme 

point of  the unit ball of  X. 

LEMMA 3. Let X be a Banach space with CPCP. Let C c X be closed, 
bounded and convex. Let f ~ X *  and a E R  be such that inf f ( C ) < a <  
supf(C) .  Let XoEf-l(a)n C be a point of weak-to-norm continuity for 
f -  J(a) N C. Then Xo is a point of weak-to-norm continuity for C. 

PROOF. Let e > 0 and let V be an elementary weakly open neighbourhood 
of  x0 such that 

diam V n f -  ~(a) n C < e/6. 

Then we can choose x~, x2~ V n C such that 

Let 

f ( x O  - f ( x o )  = f ( x o )  - f ( x 2 ) - - #  > o. 

Ki = (x = x ,  + t(y - x i ) : t  >O,y~  V n f -l(a) n C}, 

i -- 1, 2. Ki is the positive cone generated by xi and V n f -~ (a )  n C. Notice 

that if  a - p < 7 < a + B, then 

(,) diam f - l ( y )  n C n (K, u/(2) < e/3. 
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Choose x3, x4 on the line segment between xl and x2 such thatf(x3) > a > f(x4) 

and 

(**) II x3 - x4 II < e/3. 

Let 

Then 

= v n (x x. f(x3)> f ( x ) >  f(x,)). 

Xo~ 1/"1 n C c Kt u K2. We claim that diam Vt N C < e. Indeed, let 
y, z E V l n C and denote by Yl the point of  intersection of the hyperplane 

f - 1(f(y)) and the line segment [Xl, x2], and similarly zt = f - l(f(z)) n [xl, x2]. 

Then y, YI, z, zl ~ C n (Kl U K2), so by (.), [[ y - Yl [[ < e/3 and [[ z - zl II < 
e/3. Since [yl, y2] c [x3, x4], we have, by (**), [[ yt - z~ [[ < e/3. Thus [[ y - 

z [[ < e, and the proof is complete. • 

LEMMA 4. Let X be a Banach space with CPCP, e > 0, and f E X*. Let 

K C f-~(0) be closed, bounded and convex, and 

C = co( ( f - l (0 )  n e - l ~ x )  u K). 

Then there exists an x ~ K which is a point o f  weak-to-norm continuity o f  C. 

PROOF. Without loss of generality, we may suppose that sup f ( K ) >  O. 

Choose 0 < a < s u p f ( K ) .  If the set C1 --- co((f-~(0) n e-~Mx) U K) were 
closed, then we could obtain a point of weak-to-norm continuity for 6"1 in the 
set f -  l(a) n q ,  by Lemma 3, and then using convexity we could slide this 

point up to K and be done. As q is not, is general, closed, we transfer the 

problem to X**, where we can take advantage of compactness. 

Thus let D = co( ( f - t (0 )  n e-~$x. . )  U/~*), where / (*  denotes the weak*- 
closure of K in X**, and we considerfas an element of X***. Since D is exactly 

the range of the continuous map ( x , y , t ) ~ ( 1  - t ) x + t y ,  from 

( f -~(0)  n e - l~x . . )  × I(* × [0, 1] to X**, D is weak*-compact. By the weak*- 

density of K in / (*  and o f f - t ( 0 )  n ~ - l ~ x  in f -~(0)  n e-~flx.., we have that 

D = C*. 

Let z be a point of  weak-to-norm continuity for f -~ (a )  n C. By Lemma 3, z 

is a point of  weak-to-norm continuity for C. It follows that z is a point of  

weak*-to-norm continuity for D. Since f ( z ) ,  0, there are elements x ~K*,  

y E f  - ~(0) N e-  ~flx.., and 0 < t < 1 such that z = tx + (1 - t)y. Let t~ > 0 and 
let V be a weak*-open neighbourhood of z such that diam V n D < t6. Then 
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1 1 - t  
W = - V -  y 

t t 

is a weak*-open neighbourhood of x, and by convexity, 

1 l - t  
W f ~ D  C - ( V A D ) -  y. 

t t 

Thus diam W N D < d. Hence x is a point ofweak*-to-norm continuity for D, 

and x is in/(*. By the weak*-density of  Kin / (* ,  x ~ K ,  and is clearly a point of  

weak-to-norm continuity for C. • 

Note that if we assume in Lemma 4 that Kis the unit ball of  a strictly convex 

norm on X, then the point x E Kproduced by the Lemma is, in fact, an extreme 

point of  D, and hence of C. To see this, suppose that x = (y + z)/2, where 

y, z E D. The there exist y~, zl ~/('*, Yz, z2 E f -  ~(0) N e-  J~x.. and 0 < a, fl < 1 

so that y = ay~ + (1 - a)yz and z =flz~ + (1 - f l )z2.  Note that D has non- 

empty interior, so by the Hahn-Banach theorem, there is a g E X*** such that 

g(x)  = sup g(D). By convexity, 

g(x)  = g(y) = g(z)  = g(y,) = g(Y2) = g(zO = g(zz). 

Now, by the same argument as in the proof of Lemma 4, the points y, z, y~ and 

z~ are all points of weak*-to-norm continuity, and hence are in X. Thus, 

y~, z~ EK.  Since also x EK,  we have, by strict convexity, y~ = z~ = x. Thus 

x y + z  1 - a  

Since fix)4= 0 and f (Yz)= fizz)--- 0, we must have (a +f l ) /2  = 1, and so 
a = f l  = 1, that is, x = y  = z. 

LEMMA 5 (Bishop-Phelps [1]). Let f ,  g ~ S x .  and let e > O. I f  g(x)  = 1 and 

f i x )  = 0 implies II x I1 > e - ' ,  then II f -  g II < o r  11 f +  g II < 2e. 

PROOF OF THEOREM 1. We prove only part (b). The proofs for part (a) are 

similar. 

(b) ( ~ )  Let II • II be an equivalent strictly convex norm on X. For each 

positive integer n, let 

U, = { f ~ S x . :  3 0 < a <  1 such that d i a m S ( f ,  ~'x, a ) < n - ~ } .  
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We claim that Un is norm open and dense in the unit sphere of X*, and hence, 

by the Baire Category Theorem, U = I"1Un is also dense. Given the claim, it is 

clear that e a c h f E  U is a strongly exposing functional for X. By Smuljan's test 

[7], f i s  a point of  Fr6chet differentiability of II • I1". 
To see that U~ is open, let f ~  U~, with corresponding slice S(f, ~x, o0. If 

e, fl > 0 are chosen so that fl < a - 2e, and i fg E ~ x .  such that II f -  g II < e, 
then it follows easily that ~ v~ S(g, ~x, fl) c S(f,  ~lx, a), and so g ~  U~. 

To see that Un is dense, let f E  6~x.. Using the notation of Lemma 4 (with 

K = 9~x), there is an x ~ ~ x  which is a point of  weak-to-norm continuity for 

C. Since II • II is strictly convex, the remark following Lemma 4 gives that x is 

an extreme point of  C, and thus, by a result of Lin, Lin and Troyanski [ 14], x is 

a denting point of C. It is immediate that if g E 6ex. and a > 0 are such that 

diam S(g, C, a)< n-~, then g ~ U~ and f and g satisfy the hypotheses of 

Lemma 5. By the symmetry of C, we are done. 

(= , )  This part of the proof has been motivated by Phelps' example in [18] 

and Edelstein's example in [9]. 

Suppose X does not have CPCP. Let II • II1 denote the original norm on X. 
Since X is separable, it has a countable norming set { ~}f~ in the unit sphere of 

X*. Since X does not have CPCP, there is a non-empty, closed, bounded, 

convex subset C o f X a n d  an e > 0 such that if Uis a weakly open set in X, then 

diam U N C > e if U A C ~ ~ .  It is not difficult to observe that the same 

property holds (with the same e) for, successively, - C, C + ( - C), ~2 = 

~ + C + ( - C), and 9~ = ~ ,  where M~ denotes the unit ball of l[ " II i. 
Let III • III denote the Minkowski functional of  M and define an equivalent 

norm I1" II on S by 

IIx II 2= Illxlll2+ ~ 2-Jf~(x) 
j = l  

for x E X .  

We show that II • II is a strictly convex norm whose unit ball is not dentable, 

and hence I[ " I1" cannot be Fr6chet differentiable anywhere. 

Suppose x, y ~ X  such that I1 x II = II y U -- U (x  + y ) / 2  II = 1. B y  a stan- 
dard convexity argument, 
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for all j = 1, 2 . . . . .  By the choice o f  { fj}, x = y,  and so II • II is strictly 

convex. 

Now let 

m = inf{ III x II1" II x II = l } a n d  M = sup{ II x II, "11t x III < t }. 

Let f~X* with II f II* = 1, and let a > 0. Choose an xoEX with II :Co II - 1 
such that f (Xo)> 1 - a  and choose an integer no such that M222-"o<~ .  

Consider the weakly open set 

U = {x ~ X'I f(x - Xo) I < 3 and I fAx - xo) l < a/M, j = 1, 2 , . . . ,  no). 

Let ~3  = (x  ~ X:lll x III ---< III Xo III }- Since Xo E u t~ ~3, since III Xo III ---- m, and 
since for any weakly open set Vin X w e  have diam V ~ ~ > e if  V A ~ * ~ ,  a 

simple homothety  argument shows that diam U N ~3  > me, where diameter  is 

meant  with respect to the original norm II • I1,. Therefore, there is an x, E ~3  

such that I 1 : , - X o  II~>me/4, If(x~-xo)l < &  and Ifj(xl--Xo)l <MM for 

j =  1 , 2 , . . . , n o .  Since I1" II, =<MIll • III and IIIx0111~+ ~=,  2-Jff(xo)= 1, it 
follows that 

II x, II = = III x,  III ~ + ~. 2 - J f : ( x , )  
j = l  

=< IIIxolll=+ Y+ 2-f:(Xo)+ ~ 2-J(f:(x,)- f:(Xo)) 
j= l  j= l  

71 o 

= 1 + X 2 - J ( f : ( & )  -- f : ( x o ) )  + ~, 
j = I j = n o +  i 

2-J( f?(x,) - f~(xo)) 

n o 

=<l+y~ 
j = l  

2-x(Ifj(x,) l  + I~(xo) l)(Ifj(x,)l - Ifj(xo) l) 

+ ~ 2-x(Ifj(x,) l  + IfAxo)l) 2 
j = no+ 1 

n o 

< 1 + (J/M) ~ 2 - j  II fJ II ~'( II x,  I1~ + II Xo II 1) 
j = l  

+ ~ R-J( II f: II ~( II x~ IIi + II Xo II,))= 
j = n o +  1 
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< 1 + (6/M)(2M) + 2-"0-4M 2 

N I + 3 3 .  

Since ~ can be chosen arbitrarily small, it follows that given an f ~  X* with 

II f ]l * = 1, there are sequences {xn } 3 and {y. } 3 such that for all n = 1, 2 . . . .  , 

I] x, 11 = 11 y, [1 = 1 and [I x , - y .  II1 >--me~8, and lim f ( x , ) =  lim f ( y , ) =  1. 
There fo re ,  II " II is not dentable. • 

Recall [8] that a Banach space Xhas RNP if and only if the unit ball of  every 

equivalent norm on X is dentable. Using the result of  Lin, Lin and Troyanski 

mentioned earlier and a standard argument using the Hahn-Banach Theorem 

and Smuljan's test, we easily obtain: 

COROLLARY 6. Let X be a separable Banach space. The following are 
equivalent: 

(a) X has CPCP. 
(b) The unit ball of  every equivalent strictly convex norm on X is dentable. 
(c) The unit ball o f  every equivalent strictly convex norm on X is the closed 

convex hull o f  its strongly exposed points. 

We also have the following version of the Bishop-Phelps Theorem: 

PROPOSITION 7. Let X be a Banach space (not necessarily separable) which 
has CPCP, and let K c X be closed, bounded and convex. Then the set of 
functionals which support K at a point o f  weak-to-norm continuity o f  K is norm 
dense in X*. 

PROOF. We may assume, without loss of generality, that K c ½~x. 

Let e > 0 and let f E  b°x.. We show that there exists a g ~ box* such that 

11 f -  g 1] < 2e and g supports Kat  a point of  weak-to-norm continuity of K. If 

f is constant on K, we can clearly choose g = f.  Otherwise, there exist 

u, v, w = (u + v) /2EK such that f(u) < f ( w )  < f(v). Let K1 = K - w. Then 

g I C ~ x  and it suffices to establish the proposition for the set KI. 

By Lemma 4, there is an x ~ Kl which is a point of  weak-to-norm continuity 

of C =~-6(( f - l (0)  (1 e - l ~ x )  U KO. By the choice of K~, we may assume 

f (x)  > 0. Note that C has non-empty interior. Thus by the Hahn-Banach 

Theorem, there exists a g E box. such that g(x) = sup g(C) > 0. Since K~ C 
~$x, g(x) =< 1. Thus fand  g satisfy the hypotheses of Lemma 5. Sincefand g are 

both positive at x, we must have I1 f -  g 1[ < 2e if e is sufficiently small. • 
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2. Convex functions 

In this section, we discuss the Fr6chet differentiability of G~teaux-smooth 

convex functions. Specifically, we prove that separable Phelps spaces are 

exactly those separable Banach spaces whose dual have C*PCP. 

PROOF OF THEOREM 2. (=*) This follows directly from Theorem l(a), since 

if II • II is an equivalent norm on Xwhose dual is strictly convex, then II • II is 
G~tteaux differentiable. 

(*=) Suppose X* has C*PCP. We will prove that if II • II is an equivalent 

Ghteaux differentiable norm on X, then II • II is Fr6chet differentiable on a 

dense set. The extension to continuous, convex, G~teaux differentiable func- 

tions then follows by the methods of Namioka and Phelps [ 17, Thm 6]. 

Thus, let II • II be an equivalent Ghteaux-smooth norm on X. For each 

positive integer n, let 

= ~x ~ .Sex : 3 f~ E .gOx • such thatfx(X) = 1 andfx has a weak*-open~. u .  
! neighbourhood W with diam W n ~x .  < n - ~ J 

We will show that U, is norm open and dense in .Sex, from which the desired 

result follows by the same methods as used in Theorem 1. 

The fact that U, is open is obtained from the Gfiteaux differentiability of the 

norm, since then the mapping x ~ f ~  is point-valued and norm-to-weak* 

continuous. 

For density, let 0 < e < ½ ,  XoE~x,  and, as in Lemma 4, let C =  

co((x0-t(0) n e-~Sx.) u ~Sx.), where we consider xoEX **. Then, just as in 
Lemma 4, C is weak*-compact, and there is an f 0 ~ x .  which is a point of  

weak*-to-norm continuity for C, with f0(xo)> 0. Let V be an elementary 
weak*-open neighbourhood off0 such that diam V N C < ( 2 n )  -1. We may 
clearly assume that g(Xo) > 1/2 i fg  E V n C. By the Bishop-Phelps Theorem, 

there is a g E V n C and and an x~ ~ .~'x such that xl supports C at g. By the 

definition of C, there are f~ E ~xo, f2 ~ Xo ~(0) O e - ~ x .  and 0 < t < 1 such that 
g = tf~ + (1 - t)f2. By the choice of V, t > 1/2. Thus 

1 1 - t  
w = - v - - - A  

l t 

is a weak*-open neighbourhood off~ with diam W n C < n -~, and, by con- 

vexity, x~ supports ~xo at f~. Thus x~ E Un. Also, x0 and x~ satisfy the 
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hypotheses of  Lemma 5. Sincef(x~) = 1 andf(xo)  > 0, we have, by Lemma 5, 

that 1[ xt - Xo l[ < 2e. Thus, U, is dense. • 

COROLLARY 8. Let X be a separable Banach space. The following are 

equivalent: 

(a) X* has C*PCP. 

(b) The dual unit ball to every equivalent Gdteaux differentiable norm on X is 

weak*-dentable. 
(c) The dual unit ball to every equivalent Gdteaux differentiable norm on X is 

the weak*-closed convex hull o f  its weak*-strongly exposed points. 

REMARKS. (a) Suppose that X is a separable Phelps space which is not an 

Asplund space, and let ]1 " II be an equivalent G~teaux differentiable norm on 

X. Let ~ : ~9~x-~ ~x* be the duality mapping. Then ~ is norm-to-weak* 

continuous, and, by the Bishop-Phelps Theorem, has norm dense range. By 

Theorem l, @ is norm-to-norm continuous at the points of a norm dense (g6, 

say G, of ~ x .  Hence ~(G)  is separable and weak*-dense in ~x*, and consists 

of  points of weak*-to-norm continuity of  ~x. .  Since X* is not separable, 

cannot be the pointwise limit of  a sequence of  norm-to-norm continuous 

functions. Note also that a norm with these properties has the Weak Compact 

Intersection o f  Balls Property [21]. 
(b) Again motivated by the RNP-Asplund duality mentioned in the Intro- 

duction, we define a dual Banach space X* to be a weak*-Phelps space if every 

continuous, convex, G~teaux differentiable dual function on X* is Fr6chet 

differentiable on a dense set. Then, if X* is separable, the methods used to 

prove Theorems 1 and 2 suffice to show that X* is a weak*-Phelps space i f  and 

only i fXhas  CPCP. (If the sequence ( ~} of  the proof of  Theorem 1 is chosen 

to be norm dense in ~x, ,  then the norm [] • ~ constructed has G~lteaux 

differentiable dual. See, for example, [22].) 
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